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Motivation

Many important classes of signals are either sparse, or compressible.
Examples: sparsity in : (a) standard, (b) Fourier, (c) wavelet basis.

CS: K-sparse x € RY. We take M << N measurements
y = Ax + n, and try to recover x knowing that it is sparse.

Related problems: recovering structure of graphical models from
samples, recovering low-rank matrices from few measurements, ...




Motivation

CS: for certain random A, x can be efficiently recovered with high
prob. after O(K log(N/K)) samples, where x is K-sparse.

Req. M for signal with K = 10.
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Our approach: receive samples sequentially y; = a’x and stop once
we know that enough samples have been received.
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Efficient solution of the sequential problem.




Batch CS

Batch CS: suppose y = Ax™. Find the sparsest x satisfying y = Ax.
Relaxations: greedy methods, convex ¢;, non-convex £, sparse
Bayesian learning, message passing, e.t.c. — these all give sparse
solutions. How to verify that the solution also recovers x*7
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To guarantee correct reconstruction with high probability - we need
a superfluous number of samples to be on the ’safe side’.




Sequential CS formulation

Observations are available in sequence: y; = a/x*, i =1,.., M.

At step M we use any sparse decoder to get a feasible solution X/,
e.g. the ¢ decoder:

Xy = argmin||x||; st ax=vy;, i=1,..,. M

and either declare victory and stop, or ask for another sample.

Q: How does one know when enough samples have been received?

Waiting for M o« CK log(N/K): requires knowledge of K,
K = ||x*||o. Also only rough bounds on proportionality constants
may be known, and not even for all algorithms.




(Gaussian measurement case

Receive y; = alx*, where a; ~ N (0, 1) i.i.d. Gaussian samples.

Claim: if xM*! = xM then xM = x* with probability 1.
AM 2 [af, .. .a),]

T
Apr41X = YM+

AMx =yi.u

\

A new sample a’y;, ;X = ypr41 passes a random hyperplane through
x*. Probability that this hyperplane also goes through %™ is zero.




(GGaussian case (continued)

Even simpler rules: (i) if ||x"||o < M or if (ii) a),, ;%™ = ym41

then xM = x*.

This works because for a random Gaussian matrix all M x M
submatrices are non-singular with prob. 1.
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Example: N = 100, and K = 10.
Top plot: ||x™M||o.
Midle plot: ||xM]|;.

Bottom plot: [|x* — xM]||5.




Bernoulli case

Let a; have equiprobable i.i.d. Bernoulli entries &=1. Now M x M
submatrices of AM can be singular (non-0 probability).

The stopping rule for the Gaussian case does not hold. We modify
it as follows: wait until x¥ = xM+1 = | =xM+T,

Claim: After T-step agreement P(xMT1 #£ x*) <2771,

Proof depends on Lemma (Tao and Vu): Let a € {—1,1}" be an
i.i.d. equiprobable Bernoulli. Let W be a fixed d-dimensional
subspace of RY, 0 < d < N. Then Plac W) < 2474,

Suppose xM #£ x*. Let J and Z be their supports, L = [Z U J|.
Then A= {azys | (XM —x*) azusy =0} is an (L — 1)-dim.
subspace of RY. Prob that a%i}l belongs to A is at most 1/2. ¢




Bernoulli case (continued)

Rule only uses T'. Ideally we should also use M and N: errors are
more likely for smaller M and N.

Conjecture: for M x M matrix P(det(A) = 0) oc M?21=M (Main
failure: a pair of equal rows or columns). Best provable upper
bound is still quite loose. Such analysis could allow shorter delay.
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Example with K = 3, N = 40. Example with K = 10, N = 40.
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Near-sparse signals

In many practical settings signals are near-sparse: e.g. Fourier or
wavelet transforms of smooth signals.
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CS results: with roughly O(K log N) samples, Xx™ has similar error
to keeping K largest entries in x™.

Our approach:

Given %M, we obtain T new samples, and find distance from %™ to
Hyor ={x|y; =alx, 1 <i< M+T}. This distance can be used
to bound the reconstruction error ||x* — %M ||,.
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Near-sparse signals (continued)

Let Hyyr 2 {x | y; = alx, i=1,..,M +T}. Let 67 be the angle

between the line (x*,%xM) and Hy/ 7.

2 Cr dix™, H
sin(6r) Cr d(x™, Hyir)

Let L=N— M.
Using properties of xr, x7 and
Jensen’s ineq. we have:

\/7 [L—2
sm(@) — T—-2

Var [sm(@)} % 3 %
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Examples: near-sparse signals
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and bounds for (Top) sparse
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(Bottom): power-law decay signal,

N = 1000, T = 10.
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Near-sparse and noisy: simplified
approach

Current solution X, true: x*. Take T new samples y; = a,x*, and
compute ¢; = a;x. Denote the error by 6 = x — x*, and let
i = :gz — Yj. Then

zi=ay, 1<i<T

Now z;’s are i.i.d. from some a zero-mean distribution with
variance ||§]|5 Var(a;;).

We can estimate ||§||5 by estimating the variance of the z;. For
example, for Gaussian a;, confidence bounds on ||4||5 can be
obtained from the x4 distribution.

This is related to recent paper by Ward, ” Compressed sensing with
cross-validation” that uses the Johnson-Lindenstrauss lemma.
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Solving sequential CS

Main goal of sequential CS — min number of samples. Yet, we also
want efficient solution — not just resolving each time.

Warm-starting simplex: x is not feasible after M + 1-st sample.

Add a ’slack’ variable: min ||x||; + Qz, where y1.)y = ApX,
Ynm+1 = Ay X — 2z, 2 > 0. For @ large enough, z is forced to 0.

Alternative approach: homotopy continuation between %™ and
xM+1 _ follow the piece-wise linear solution path. Garrigues and

El Ghaoui, 2008, and indep. Asif and Romberg, 2008.
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Summary and future work

Sequential processing can minimize the number of required
measurements.

e (Gaussian case: a simple rule requires the least possible number
of samples.

e Bernoulli case: trade-off between probability of error and delay.

e Near-sparse and noisy case: Change in solutions gives us
information about solution accuracy.

Interesting questions:

e Related results in graphical models structure recovery from
samples, and low-rank matrix recovery.

e More efficient sequential solutions.

e Comparison with active learning approaches?
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